III B. TECH I SEMESTER REGULAR EXAMINATIONS, FEB-2022 DESIGN AND ANALYSIS OF ALGORITHMS (Common to CSE and INF)

Time: 3 Hours

Max. Marks: 60

Note: Answer ONE question from each unit ($\mathbf{5 \times 1 2 = 6 0}$ Marks)

UNIT-I

1. a) Explain the various asymptotic notations used in algorithm design?
b) Write an algorithm to compute the $\mathrm{n}^{\text {th }}$ Fibonacci number? Provide time complexity analysis using step count method.
(OR)
2. a) Describe divide and conquer based binary search technique with an example.
b) Discuss the working strategy of quick sort and illustrate the process of quick sort algorithm for the given data: $43,32,22,78,63,57,91$ and 13 .

UNIT-II
3. a) Describe Knapsack problem statement? Find all feasible solutions for the following: instance of the knapsack problem: $\mathrm{n}=3, \mathrm{~m}=20$, $(\mathrm{p} 1, \mathrm{p} 2, \mathrm{p} 3)=(25,24,15)$, and $(\mathrm{w} 1, \mathrm{w} 2, \mathrm{w} 3)=(18,15,10)$.
b) Discuss Greedy algorithm to find optimal storage on tapes problem statement? Find an optimal placement for 13 programs on three tapes $\mathrm{T}_{1}, \mathrm{~T}_{2}, \mathrm{~T}_{3}$, where the programs are of lengths $12,5,8,32,7,5,18,26,4,3,11,10$, and 6.
(OR)
4. a) Write greedy algorithm to find the shortest paths.
b) Find shortest path in the following graph.

UNIT-III
5. a) What is meant by principle of optimality? Identify solution to an optimal solution to the knapsack instance $n=5, M=15,(p 1, p 2 \ldots \mathrm{p} 5)=(10,5,15,7$, $6)$ and $\left(w_{1}, w_{2}, \ldots, w_{5}\right)=(2,3,5,7,1)$ using dynamic programming?
b) Illustrate all pair shortest path algorithm to find the length of shortest paths in with the following graph

(OR)
Page 1 of 2
6. a) Illustrate Bellman and Ford algorithm to compute shortest paths in the following graph.

b) Describe string editing problem? Find a minimum-cost edit sequence that transforms X into Y , Let $\mathrm{X}=\mathrm{a}, \mathrm{a}, \mathrm{b}, \mathrm{a}, \mathrm{a}, \mathrm{b}$ and $\mathrm{Y}=\mathrm{b}, \mathrm{a}, \mathrm{b}, \mathrm{a}, \mathrm{a}$.

UNIT-IV
7. a) Discuss sum of subsets problem? Write recursive backtracking algorithm for sum of subsets of problem?
b) Explain Hamilton cycle. Draw the state space generated to identify Hamilton cycles in the following graph?

(OR)
8. a) Let $w=\{5,7,10,12,15,18,20\}$ and $m=35$.Find all possible subsets of w that sum to m . Draw the portion of the state space tree that is generated?
b) Draw the state space tree for the following instance of graph coloring
problem. Where $\mathrm{n}=4$, colors $\mathrm{k}=3$.

UNIT-V
9. a) Write an algorithm for a FIFO branch-and-bound search.
b) Define branch and bound problem. Solve the following instance of Knapsack problem by Branch and bound Algorithm. W = 15 .

Item	Weight	Profit
1	5	40
2	7	35
3	2	18
4	4	4
5	5	10
6	1	2

(OR)
10. a) Draw the portion of the state space tree generated by LCBB for the following knapsack instances: $\mathrm{n}=5$, $\{\mathrm{p} 1, \mathrm{p} 2, \mathrm{p} 3, \mathrm{p} 4, \mathrm{p} 5)=(10,15,6,8,4)$, $(\mathrm{w} 1, \mathrm{w} 2, \mathrm{w} 3, \mathrm{w} 4, \mathrm{w} 5)=(4,6,3,4,2)$, and $\mathrm{m}=12$
b) Define the following
(i) NP
(ii) NP-compete
(iii) NP-hard (iv) Cook's Theorem

